.DISTO |

Small-Signal Distortion Analysis

The distortion analysis portion of SPICE ( .DISTO ) computes steady-state harmonic and intermodulation products for small input signal magnitudes. If signals of a single frequency are specified as the input to the circuit, the complex values of the second and third harmonics are determined at every point in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds out the complex values of the circuit variables at the sum and difference of the input frequencies, and at the difference of the smaller frequency from the second harmonic of the larger frequency.

Distortion analysis is supported for the following nonlinear devices: diodes, BJT, JFET, MOSFETs (levels 1, 2, 3, 4/BSIM1, 5/BSIM2, and 6) and MESFETS. All linear devices are automatically supported by distortion analysis. If there are switches present in the circuit, the analysis continues to be accurate provided the switches do not change state under the small excitations used for distortion calculations.

.DISTO <sweep type> <points> <start frequency> <end frequency> [F2OVERF1] |

sweep type

Must be LIN, OCT, or DEC, as described below.

Sweep type | Description |

LIN | Linear sweep. The frequency is swept linearly from the starting to the ending frequency. The points is the total number of points in the sweep. |

DEC | Sweep by decades. The frequency is swept logarithmically by decades. The points is the number of points per decade. |

OCT | Sweep by octaves. The frequency is swept logarithmically by octaves. The points is the number of points per octave. |

points

Specifies the number of points in the sweep, using an integer.

start frequency

Is the starting frequency.

end frequency

Is the final frequency.

F2OVERF1

It should be a real number between (and not equal to) 0.0 and 1.0.

The Disto line does a small-signal distortion analysis of the circuit. A multi-dimensional Volterra series analysis is done using multi-dimensional Taylor series to represent the nonlinearities at the operating point. Terms of up to third order are used in the series expansions.

If the optional parameter F2OVERF1 is not specified, .DISTO does a harmonic analysis - i.e., it analyses distortion in the circuit using only a single input frequency F1, which is swept as specified by arguments of the .DISTO command exactly as in the .AC command. Inputs at this frequency may be present at more than one input source, and their magnitudes and phases are specified by the arguments of the DISTOF1 keyword in the input file lines for the input sources (see the description for independent sources). (The arguments of the DISTOF2 keyword are not relevant in this case). The analysis produces information about the A.C. values of all node voltages and branch currents at the harmonic frequencies 2F1 and 3F1, vs. the input frequency F1 as it is swept. (A value of 1 (as a complex distortion output) signifies cos(2J(2F1)t) at 2F1 and cos(2J(3F1)t) at 3F1, using the convention that 1 at the input fundamental frequency is equivalent to cos(2JF1t).) The distortion component desired (2F1 or 3F1) can be printed or plotted. (Normally, one is interested primarily in the magnitude of the harmonic components, so the magnitude of the AC distortion value is looked at). It should be noted that these are the A.C. values of the actual harmonic components, and are not equal to HD2 and HD3. To obtain HD2 and HD3, one must divide by the corresponding A.C. values at F1, obtained from an .AC line.

If the optional F2OVERF1 parameter is specified, it should be a real number between (and not equal to) 0.0 and 1.0; in this case, .DISTO does a spectral analysis. It considers the circuit with sinusoidal inputs at two different frequencies F1 and F2. F1 is swept according to the .DISTO control line options exactly as in the .AC control line. F2 is kept fixed at a single frequency as F1 sweeps - the value at which it is kept fixed is equal to F2OVERF1 times FSTART. Each independent source in the circuit may potentially have two (superimposed) sinusoidal inputs for distortion, at the frequencies F1 and F2. The magnitude and phase of the F1 component are specified by the arguments of the DISTOF1 keyword in the source's input line (see the description of independent sources); the magnitude and phase of the F2 component are specified by the arguments of the DISTOF2 keyword. The analysis produces plots of all node voltages/branch currents at the intermodulation product frequencies F1 + F2, F1 - F2, and (2 F1) - F2, vs the swept frequency F1. It is to be noted as in the harmonic analysis case, the results are the actual AC voltages and currents at the intermodulation frequencies, and need to be normalized with respect to .AC values to obtain the IM parameters.

If the DISTOF1 or DISTOF2 keywords are missing from the description of an independent source, then that source is assumed to have no input at the corresponding frequency. The default values of the magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified in degrees.

It should be carefully noted that the number F2OVERF1 should ideally be an irrational number, and that since this is not possible in practice, efforts should be made to keep the denominator in its fractional representation as large as possible, certainly above 3, for accurate results (i.e., if F2OVERF1 is represented as a fraction A/B, where A and B are integers with no common factors, B should be as large as possible; note that A < B because F2OVERF1 is constrained to be < 1). To illustrate why, consider the cases where F2OVERF1 is 49/100 and 1/2. In a spectral analysis, the outputs produced are at F1 + F2, F1 - F2 and 2 F1 - F2. In the latter case, F1 - F2 = F2, so the result at the F1-F2 component is erroneous because there is the strong fundamental F2 component at the same frequency. Also, F1 + F2 = 2 F1 - F2 in the latter case, and each result is erroneous individually. This problem is not there in the case where F2OVERF1 = 49/100, because F1-F2 = 51/100 F1 < > 49/100 F1 = F2. In this case, there are two very closely spaced frequency components at F2 and F1 - F2. One of the advantages of the Volterra series technique is that it computes distortions at mix frequencies expressed symbolically (i.e., n F1 + m F2), therefore one is able to obtain the strengths of distortion components accurately even if the separation between them is very small, as opposed to transient analysis for example. The disadvantage is of course that if two of the mix frequencies coincide, the results are not merged together and presented (though this could presumably be done as a postprocessing step). Currently, the interested user should keep track of the mix frequencies himself or herself and add the distortions at coinciding mix frequencies together should it be necessary.

```
.DISTO DEC 10 1kHz 100Mhz
.DISTO DEC 10 1kHz 100Mhz 0.9
```

Commands

Independent voltage source

Independent current source